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Abstract. The fully convolutional networks (FCNs) have achieved state-of-the-
art performance in numerous medical image segmentation tasks. Most FCNs
typically focus on fusing features in different levels to improve the learning
ability to multi-scale features. In this paper, we explore an alternative direction
to improve network performance by enhancing the encoding quality of high-
and low-level features, so as to introduce two feature enhancement modules:
(i) high-level feature enhancement module (HFE); (ii) low-level feature
enhancement module (LFE). HFE utilizes attention mechanism to selectively
aggregate the optimal feature information in high- and low-levels, enhancing the
ability of high-level features to reconstruct accurate details. LFE aims to use
global semantic information of high-level features to adaptively guide feature
learning of bottom networks, so as to enhance the semantic consistency of high-
and low-level features. We integrate HFE and LFE into a typical encoder-
decoder network, and propose a novel medical image segmentation framework
(HLF-Net). On two challenging datasets of skin lesion segmentation and spleen
segmentation, we prove that the proposed modules and network can improve the
performance considerably.
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1 Introduction

Accurate and reliable segmentation of various anatomies from medical images is
essential to improve diagnosis and assessment of related diseases. However, it is rather
time-consuming to label a large amount of medical images manually. Thus, with the
development of fully convolutional network (FCNs) [1], they have achieved state-of-
the-art performance for many medical image segmentation tasks [2–4].

Most FCNs have a typical encoder-decoder framework [4]. The high-level semantic
information of input images is embedded into the feature maps, and then the decoder
uses multiple up-sampling components to restore the original resolution and generate
segmentation results. However, when encoding semantic features of images, it is dif-
ficult for the encoder to effectively capture global context features of targets because of
small local receptive field of bottom networks. Additionally, although the top-level
feature maps from encoder may be highly semantic, the ability of decoder to
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reconstruct accurate details is severely limited to the low feature resolution. Therefore,
much work has recently attempted to fuse low-level but high-resolution features from
the bottom layers with high-level but low-resolution features from the top layers, which
makes decoder generate more accurate segmentation results. Ronneberger et al. [2]
proposed Unet which is one of the most representative frameworks of this idea, pro-
viding state-of-the-art performance for medical image segmentation tasks.

Although Unet has achieved great success, it also exists some problems. There is a
huge gap of semantic level and spatial resolution between high- and low-level features,
and the low-level features have complex background noise [5]. Therefore, it is inefficient
to integrate the low-level features into high-level features by simple skip connection as
used in [2]. Inspired by [6, 7], we introduce high-level features enhancement block
(HFE) to optimize the encoding quality of high-level features. HFE adaptively aggregates
the optimal feature information in different levels by utilizing the complementary feature
information of high- and low-levels. The attentionmechanismused inHFEcan recalibrate
the spatial and channel features of feature maps respectively, and suppress noise from the
bottom layers, so as to improve encoding quality of target-related features.

In addition, we believe that not only the detail reconstruction of high-level features
requires the high-resolution information from bottom layers, but also the feature
encoding of bottom layers requires the guidance of high-level semantic information.
With this idea, we construct a semantic embedding module (LFE). LTE adaptively
guides the bottom layers to learn the features of effective regions by the global
information perception abilities of high-level features, and enhances the semantic
consistency of the high- and low-level features. As far as we know, this is the first time
to introduce high-level semantic information into bottom layers in the field of medical
image segmentation, and to guide the feature learning of the bottom-layer network
through global information.

We integrate the proposed feature enhancement modules (HFE & LFE) into a
typical encoder-decoder network for medical image segmentation to demonstrate that
these two modules are a generic network component to boost performance, so as to
propose a novel medical image segmentation framework (HLE-Net). We evaluated our
HLE-Net and proposed modules on two challenging datasets of skin lesion segmen-
tation and spleen segmentation. The results show that the proposed methods can
achieve competitive performance, and improve segmentation performance
considerably.

2 Method

We first define a set of convolutional transformations Ftr : X ! X 0;X 2 RH"W"C;

X 0 2 RH0"W 0"C0
, here H and W are spatial height and width, with C and C0 being the

input and output channels, respectively. The convolution transforms Ftrð!Þ fuse the
spatial and channel information in the input feature maps X in the local receptive field,
thereby outputting a richer feature representation X 0. By stacking the convolutional
layers and the nonlinear activation function layers, the feature X 0 will be encoded into
higher-level semantic information U. In the FCNs, researchers directly fuse low-level
features X and high-level features U into (X + U), or directly concatenate ðFtrðX;UÞÞ
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by skip connections to obtain high-resolution information from the bottom layers.
Although good results have been achieved, there are few studies on further optimizing
the encoding quality of high- and low-level features in FCNs. In this study, we focus on
using complementary information between high- and low-level features in FCN to
enhance the encoding quality of high- and low-level features respectively, and achieve
accurate and robust segmentation. We first embed high-level semantic information in
the encoder of FCN, then embed the high-resolution features from bottom layers in the
decoder, and use the idea of attention mechanism to enhance the efficiency of high- and
low-level feature fusion in an adaptive learning way. We will detail the feature
enhancement modules (HFE & LFE) proposed in this paper and the corresponding
segmentation framework (HLE-Net) in the following parts.

2.1 High-Level Feature Enhancement Module (HFE)

We introduce a high-level feature enhancement module (HFE), which adaptively learns
the feature information related to a task through complementary semantic information
in high- and low-level features. In addition, HFE emphasizes that different feature
channels or different spatial regions in feature maps of different semantic level have
different help for tasks. By enhancing relative features and suppressing irrelative fea-
tures, the encoding quality of high-level features can be greatly improved.

HFE consists of a channel recalibration and a spatial recalibration step. Firstly, we
consider the adaptive channel recalibration. Assume that the high- and low-level fea-
tures Y ¼ ðX;UÞ ¼ ½y1; y2; ! ! ! ; yc; ! ! ! ; y2c' are a combination of channels yi 2 RH"W .
We use a global average pooling to compress yi into a channel descriptor, and generate
a channel-wise statistics vector z 2 R1"1"2c. The t-th element of z is calculated by
zt ¼ AvgpoolðytÞ. z is processed by a block of two 1 " 1 convolution layers that are
followed by ReLU and Sigmoid respectively. The output of the Sigmoid is the channel-
wise attention coefficient ~z ¼ rðz0Þ. ~z is used to recalibrate Y to ~Yc ¼ ~z( Y , where (
denotes element-wise multiplication. Then, we consider spatial adaptive recalibration.
By a feature transformation, we use a 1 " 1 convolution to compress Y into a single
channel feature map s, which is followed by Sigmoid to obtain pixel-wise attention
coefficient ~s ¼ rðsÞ. Finally, the feature ~Ys ¼ ~s( Y

! "
of spatial recalibration is

obtained by element-wise multiplication.

Fig. 1. The framework of HFE with spatial and channel attentions.
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In HFE, the recalibration of spatial and channel features fully considers the guid-
ance of different levels (high- and low-) of semantic information. By stacking HFE and
up-sampling components, FCN can gradually refine and reconstruct high-resolution
target details and generate accurate segmentation results. However, since the values of
the attention coefficient are in the range of 0 to 1, repeated superposition of the HFE
will result in a decrease in the value of the deep feature response, thereby affecting the
segmentation performance. Here, we use residual connection [8] to improve the fea-
sibility of optimization based on the preservation of original information. Therefore, the
output features of channel recalibration and spatial recalibration in HFE is
~Yc ¼ ð1þ~zÞ ( Y ; ~Ys ¼ ð1þ~sÞ ( Y . Finally, ~Yc and ~Ys are concatenated and sent to a
3" 3 convolution layer to fuse their respective feature information, and the channel
dimension is reduced. The framework of HFE is illustrated in Fig. 1.

2.2 Low-Level Feature Enhancement Module (LFE)

In FCN, features in different layers encode information at different levels. The features
from bottom layers have rich spatial information, but they suffer from the problem of
background noise and semantic ambiguity due to the small local receptivefield and lack of
guidance of the global context information. The detail reconstruction of the high-level
features requires the help of high-resolution information from bottom layers. At the same
time, we believe that the feature encoding of the bottom network in FCN requires the
guidance of global semantic information to enhance the semantic consistency of high- and
low-level features and suppress irrelative background noise. Therefore, the proposed LFE
encodes the prior global semantic information of targets into the low-level features in an
adaptive learningmanner to enhance the semantic encoding ability of the bottomnetwork.

The LFE consists of two branches: a semantic embedded branch and a trunk
branch. The trunk branch is responsible for encoding and learning the features asso-
ciated with the task. The semantic embedded branch is inspired by the excellent seg-
mentation framework [2] and uses a mini encoder-decoder structure. The encoding
stage quickly expands the receptive field and encodes global context information by
down-sampling. The decoding stage restores spatial resolution through up-sampling
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Fig. 2. The schematic illustration of the low-level features enhancement module.
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and obtains high-level semantic features. Then the global semantic information of high-
level features is embedded into the trunk branch to guide its feature encoding and
optimize its encoding quality. At the same time, the trunk branch is enhanced to learn
the features in the effective region. Specifically, as shown in Fig. 2, in the semantic
embedded branch, the input feature maps X obtain a more global receptive field and
higher semantic features after two consecutive down-sampling and up-sampling
operations. We also add skip connections between down-sampling and up-sampling to
fuse information at different scales. Through a 1" 1 convolutional layer, high-level
semantic information is encoded into spatial projection map s0; s0 2 RH"W . The final
semantic embedded map is obtained from a Sigmoid layer. The value of each element
in rðs0Þ represents the relative importance of spatial information on the corresponding
feature maps. Afterwards, this prior global information is embedded in the trunk branch
to optimize its encoding quality through element-wise multiplication. In addition, in
order to prevent the decrease of the feature response value of the trunk branch, we also
introduce a residual connection. Therefore, the final output feature of LFE is expressed
as ~X ¼ ð1þ rðs0ÞÞ ( FtrðXÞ. In the literature [9], a similar structure with LFE is used to
introduce a feature attention mechanism throughout the network. However, unlike [9],
LFE aims to embed the global context information of the segmentation targets into low-
level features through a lighter high-level semantic encoding module to improve the
semantic encoding ability of the bottom network.

2.3 Segmentation Framework Based on Feature Enhancement

The proposed feature enhancement modules can be integrated into the existing seg-
mentation framework to improve their feature learning abilities by replacing standard
convolutional layers and skip connection operations. In this work, we integrate HFE
and LFE into a typical encoder and decoder structure, and propose a new medical
image segmentation network (HLE-Net). As shown in Fig. 3, the encoder network of
HLE-Net is composed by superimposed LFEs. Each LFE provides semantic guidance
of different levels for the encoding of the bottom network, which gradually enhances
and refines the attention to complex targets. Then, the target details are reconstructed
by the multi-layer HFEs and the original resolution is restored. Each convolution
module consists of a 3" 3 convolutional layer, a group normalization layer [10] and a
ReLU layer. In this paper, HLF-Net contains 4 down-sampling and 4 up-sampling
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Fig. 3. Illustration of the framework of our proposed HLF-Net.
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operations, and finally obtains the segmentation probability map through the Sigmoid
function.

3 Experiments

3.1 Data and Experimental Setups

We extensively evaluated the proposed approach on ISIC 20171 skin lesion segmen-
tation dataset [11] and the spleen segmentation dataset of CT volume images from
Memorial Sloan Kettering Cancer Center2. In the skin lesion dataset, 2750 dermoscopic
images from different clinical centers around the world were included, where 2000 for
training, 150 for validation and the last 600 for testing. Our second dataset includes a
total of 41 patient data. Due to memory limitations, we split the CT volume images into
512" 512 slices to train the network. We performed data splitting at patient level and
used images from 25, 4, 12 patients for training, validation and testing, respectively.
Finally, by discarding some slices containing only background from the CT volume
images, we obtained a total of 882 training images, 135 validation images, and 380
testing images.

Our HLE-Net is implemented using Pytorch on a Linux system with an Nvidia
1080Ti GPU. During training, we used the dice loss, the Adam optimizer with a
learning rate of 1 " 10−4 and the batch size of 6, with a learning rate reduction of 0.1
times after every 15 epochs. In each experiment, we saved the model that performed
best on the validation set during training as the final test model. We used data aug-
mentation including random copping and flipping to improve the robustness of the
model. For the skin lesion dataset, we first re-scaled all images to 256" 192 pixels and
normalized the pixel values of each RGB channel to between 0 and 1. Besides the
original RGB channels, we added an additional grayscale channel. For the spleen
dataset, we first normalized all images to 0 to 1 and resized the images to 256" 256.

In order to verify the effectiveness of the proposed method, we performed ablation
studies on the two datasets, and compared HLE-Net with Unet-28 [2], Res-Unet-28.
Res-Unet-28 is a modified Unet where each convolution block is replaced by the
bottleneck building block used in the ResNet [8]. In order to evaluate our method
fairly, the number of basic channels of Unet-28 and Res-Unet-28 is 28 to ensure that
the number of parameters is similar to that of HLE-Net. We use the Dice coefficient, the
Jaccard index and the Accuracy to evaluate the segmentation performance. Because
Accuracy has very little discrimination on spleen dataset, we do not show the Accuracy
of spleen segmentation in Table 1.

3.2 Results and Discussion

Table 1 shows the results of the different variants of the proposed method (only LFE,
only HFE and HLE-Net) on the skin lesion dataset and the spleen dataset, respectively.

1 https://challenge2017.isic-archive.com/.
2 http://medicaldecathlon.com/.
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In addition, the performance of Unet-28, Res-Unet-28 and the scores of the top three in
the 2017 Skin Lesion Challenge leaderboard are also shown. It can be seen that the
proposed modules considerably improve the segmentation performance of the network
on both datasets. This indicates that both LFE and HFE can effectively enhance the
encoding quality of the network. We further observe that LFE achieves higher per-
formance than HFE, which confirms our hypothesis that it is more necessary for the
feature encoding of the bottom network to require guidance from the global semantic
information of high-level features. HLE-Net integrated LFE and HFE has the best
performance among all methods. Compared with Unet-28, HLE-Net increases the
jaccard index on the spleen dataset and the lesion dataset by 4.5% and 3.4%, respec-
tively. It is also 2.3% higher than the best score on the leaderboard [13].

Table 1. Quantitative evaluation of different networks on spleen dataset and ISIC 2017.

ISIC 2017
Method MResNet-

Seg [11]
Berseth
et al.
[12]

Yuan
et al.
[13]

Unet-28 Res-Unet-
28

HLE-Net
(only
HFE)

HLE-Net
(only
LFE)

HLE-Net

Dice 0.844 0.847 0.849 0.838 0.841 0.859 0.862 0.866
Jaccard 0.760 0.762 0.765 0.754 0.755 0.777 0.783 0.788
Accuracy 0.934 0.932 0.934 0.930 0.931 0.935 0.935 0.939
Spleen
Dice – – – 0.937 0.942 0.957 0.960 0.964
Jaccard – – – 0.886 0.894 0.919 0.923 0.931
Parameters – – – 5.9 " 106 6.2 " 106 3.6 " 106 3.8 " 106 5.5 " 106

Visualization of Semantic Embedding Maps in LFE Visualization of pixel-wise attention coefficients in HFE

Input Images Unet-28 HLE-Net(only HFE) HLE-NetHLE-Net(only LFE)

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

(q) (r) (s) (t) (u)

(z)(y)(x)(w)(v)

Ground truths in segmentation imges
Rough region of the target in weight maps Segmentation  result  Mis-Segmentation region

Exam
ple B

Exam
ple A

Exam
ple A

Exam
ple B

Fig. 4. The qualitative segmentation results of two examples (A, B) on ISIC 2017. Each
example contains different network segmentation results and the visualization of the weight maps
in LFE and HFE. From left to right (a–e–h, i–m–p), feature resolution goes from high to low,
then from low to high, and finally restore the original resolution.
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The qualitative segmentation results from two examples with different appearance
on ISIC 2017 dataset are shown in Fig. 4. For the example A, the lesion area is close to
normal skin, so Unet-28 incorrectly predicts normal skin as the lesion area, but HFE
improves this situation. LFE further obtains a more accurate segmentation, which
proves that improving the encoding quality of the bottom network can improve the
segmentation result more effectively. For the example B, the background is very close
to the lesion area. Unet-28 cannot accurately locate the lesion area. Gradually refining
the attention on the segmentation targets through the attention mechanism can effec-
tively solve this problem. Both LFE and HFE can accurately identify the lesion area,
and LFE has a more accurate segmentation result. In addition, we also visualize the
semantic embedding maps in LFE and the pixel-wise attention coefficient in HFE. It
can be clearly seen that different LFE and HFE exert attention of different degrees on
the segmentation targets, and as the network goes from shallow to deep, the concerning
areas of LFE and HFE are gradually becoming more refined from blur.

4 Conclusion

This paper introduces two modules for feature enhancement for better medical image
segmentation performance. LFE aims to encode high-level semantic information into
the low-level features to improve the encoding ability of the bottom network. HFE
optimizes the fusion efficiency of high- and low-level features using attention mech-
anism, which provides more high-resolution semantic guidance for high-level features.
Based on these two modules, we propose a new medical image segmentation network
(HLE-Net). The proposed method has achieved very competitive results in two very
different tasks, skin lesion segmentation and spleen segmentation. This proves the
effectiveness and wide adaptability of the proposed method. Future work aims to apply
the proposed model to 3D segmentation or other segmentation tasks.
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