

N³H-Core: Neuron-designed Neural Network Accelerator via FPGAbased Heterogeneous Computing Cores

Yu Gong^{*}, Zhihan Xu^{*}, Zhezhi He, Weifeng Zhang, Xiaobing Tu, Xiaoyao Liang, Li Jiang Shanghai Qi Zhi Institute, Shanghai Jiao Tong University, Alibaba Group

hanghai Jiao Tong University

^{*} Means equal contribution

Background and Motivation

FPGA can adapt to various algorithms with outstanding performance.

Problem: Rich on-chip LUT resource are not well utilized.

The DNN quantization with varying bit-width is a compression scheme.

Problem: A high-performance architecture supporting mixed-precision operation is absent.

Design space exploration is conducted to limit the design space

Problem: Lacking the systematic design methodology for the single-chip heterogeneous system.

We develop a single-chip heterogeneous system for mixed-precision operation, and design the end-to-end optimization framework as a systematic design methodology for it.

Architecture of N³H-Core

Overall architecture, including heterogenous computation cores: LUT-Core and DSP-Core, composed of LUT and DSP resource on FPGA respectively.

Heterogenous Computation Cores

LUT-Core, adopt BISMO (Yaman et al., 2018) as backbone Based on bit-serial computation, supporting varying-bit operand

DSP-Core

Based on bit-parallel computation, supporting fixed-bit operand

W Buffer 0 W Buffer 1 l^a reg,co W Buffer N^w_{rea col}/2 $N_{reg,col}^{w}$ DSP-Core A Buffer 0 DSP DSP DSP A Buffer 1 reg,rov DSP DSP DSP A Buffer N^arow DSP DSP DSP N^a_{reg,col} N^a_{reg,rov} N_{rea.co}

 $L = \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix} = 2^{1} L^{[1]} + 2^{0} L^{[0]} = 2^{1} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + 2^{0} \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ $R = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} = 2^{1} R^{[1]} + 2^{0} R^{[0]} = 2^{1} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + 2^{0} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $P = L \cdot R = \left(2^{1} L^{[1]} + 2^{0} L^{[0]}\right) \cdot \left(2^{1} R^{[1]} + 2^{0} R^{[0]}\right)$ $= 2^{2} L^{[1]} \cdot R^{[1]} + 2^{1} L^{[1]} \cdot R^{[0]} + 2^{1} L^{[0]} \cdot R^{[1]} + 2^{0} L^{[0]} \cdot R^{[0]}$

Bit-serial computation

Notation	Description
М	Numbers of rows in LUT-Core (DPU array)
\boldsymbol{N}	Numbers of columns in LUT-Core (DPU array)
K	Input bit width of DPU
$D_{\rm L,buf}^{\rm a}$	Depth of activation buffers in LUT-Core
$D_{\mathrm{L,buf}}^{\mathrm{w}}$	Depth of weight buf fers in LUT-Core
$N_{\rm reg,row}^{\rm a}$	Numbers of row s in a ctivation reg ister array
$N_{\rm reg, col}^{\rm a}$	Numbers of columns in activation register array
$N_{\rm reg, col}^{\rm w}$	Numbers of col umns in weight reg ister array
$D_{\mathrm{D,buf}}^{\mathrm{a}}$	Depth of activation buf fers in DSP-Core
$D_{\mathrm{D,buf}}^{\mathrm{w}}$	Depth of weight buf fers in DSP-Core
$B^{\mathbf{a}}$	Bit-widths of quantized activation
$B^{\mathbf{w}\text{-}\mathbf{L}}$	Bit-widths of quantized weight on LUT-Core
B^{w-D}	Bit-widths of quantized weight on DSP-Core

Design knobs for N³H-Core

DSP-Core

Cost and Latency Model

Build the cost and latency model to bridge the gap between hardware and software.

Cost model:

DSP: DSP_{D-Core}=DSP_{available}

LUT: inherit from BISMO

BRAM: based on buffer size and physical structure of BRAM

Latency model:

Build the model via instruction pipeline

Predicted latency vs actual latency

Hybrid Quantization

Uniform- and Mixed-precision: Filters in each layer computed by DSP-core and LUT-core are quantized with uniform- and mixed-precision respectively.

Neuron-based workload split ratio (*i-th* layer):

ratio_i =
$$\frac{\text{Filter}_{\text{LUT}}^{i}}{\text{Filter}_{\text{all}}^{i}}$$

上海交通大学 Shanghai jiao Tong University

Design Space Exploration

Hardware- and Software-related factors

Design Factors	Range on D _A	Range on D _B			
K	$64 \cdot v$	$64 \cdot v$			
	$(0 < v < 5, v \in \mathbb{N})$	$(0 < v < 5, v \in \mathbb{N})$			
M	1-50	1-252			
Ν	1-50	1-252			
$D_{ m L,buf}^{ m a}$	$1024 \cdot v$	$1024 \cdot v$			
	$(0 < v \leq 50, v \in \mathbb{N})$	$(0 < v \leq 252, v \in \mathbb{N})$			
$D_{ m D,buf}^{ m a}$	$1024 \cdot v$	$1024 \cdot v$			
	$(0 < v \leq 25, v \in \mathbb{N})$	$(0 < v \leq 126, v \in \mathbb{N})$			
$D_{\mathrm{D,buf}}^{\mathrm{w}}$	$1024 \cdot v$	$1024 \cdot v$			
	$(0 < v < 5, v \in \mathbb{N})$	$(0 < v \leq 16, v \in \mathbb{N})$			
$\left\{B_{i}^{\text{w-L}}\right\}_{i=1}^{N}$	2-8	2-8			
$\left\{B_i^{\rm a}\right\}_{i=1}^{N}$	2-4	2-4			

RL search range of design factors (variables). { D_A , D_B } denotes the device {XC7Z020, XC7Z045}.

RL-based optimization framework

$$\mathcal{R} = \begin{cases} \frac{L_{t} - L_{m}}{L_{t}} - 1 & L_{m} > L_{t} \\ (\operatorname{acc}_{q} - \operatorname{acc}_{b}) \cdot \lambda & L_{m} \leq L_{t} \end{cases}$$

Architecture design configuration automatically generated by the framework. {D, N, T} denotes {Device, Neural Network, Target latency} respectively. {D_A, D_B} denotes the device {XC7Z020, XC7Z045}, and {N_{ResNet}, N_{MobileNet}} denotes the target DNN of {ResNet18, MobileNet-v2}, and T*t*ms denotes the target latency set in the framework is *t*-ms ($t \in \{5, 6, 7, 25, 30, 35\}$).

Configuration	K	Μ	Ν	$D^{\mathrm{a}}_{\mathrm{L,buf}}$	$D^{\mathrm{a}}_{\mathrm{D,buf}}$	$D^{\mathrm{w}}_{\mathrm{D,buf}}$
D _A N _{ResNet} T _{30ms}	128	7	17	1024	1024.2	1024
D _A N _{ResNet} T _{35ms}	128	8	16	1024	1024.2	1024
D _A N _{MobileNet} T _{5ms}	64	18	12	1024	$1024 \cdot 11$	1024
D _A N _{MobileNet} T _{7ms}	64	26	8	1024	1024.9	1024
D _B N _{ResNet} T _{25ms}	512	11	17	1024	1024.6	1024·2
D _B N _{ResNet} T _{30ms}	512	14	14	1024	$1024 \cdot 15$	1024
D _B N _{MobileNet} T _{5ms}	64	35	22	1024	1024.19	$1024 \cdot 11$
D _B N _{MobileNet} T _{6ms}	64	44	18	1024	1024.20	1024.8

Software Design Config. (ResNet18)

Layer-wise bit-width setting and workload split ratio in Config. $D_A N_{ResNet} T_{30ms}$ and $D_A N_{ResNet} T_{35ms}$.

Layer-wise bit-width setting and workload split ratio in Config. $D_BN_{ResNet}T_{25ms}$ and $D_BN_{ResNet}T_{30ms}$.

Software Design Config. (MobileNet-v2)

Layer-wise bit-width setting and workload split ratio in Config. $D_A N_{MobileNet} T_{5ms}$ and $D_A N_{MobileNet} T_{7ms}$.

Layer-wise bit-width setting and workload split ratio in Config. $D_B N_{MobileNet} T_{5ms}$ and $D_B N_{MobileNet} T_{6ms}$.

Evaluation Accuracy on ResNet18 and MobileNet-V2:

Higher accuracy than baseline.

IDE simulated latency is accurate enough to predict the FPGA measured latency.

N ³ H-Core Configuration	Bit width (W./A.)	Accuracy (%) (Top1/Top5)	Model latency (ms)	Measured latency (ms)				
ResNet-18								
Pretrained Baseline	32/32	69.76/89.08	N/A	N/A				
Manual Config. D _A N _{ResNet}	4/4	69.65/89.11	40.96	42.26				
Auto. Config. DANResNetT30ms	Flexible	67.28/87.85	29.14	31.43				
Auto. Config. DANResNetT35ms	Flexible	70.45/89.54	34.95	35.79				
Manual Config. D _B N _{ResNet}	4/4	69.65/89.11	30.26	32.77				
Auto. Config. D _B N _{ResNet} T _{25ms}	Flexible	66.81/87.19	24.83	26.90				
Auto. Config. D _B N _{ResNet} T _{30ms}	Flexible	70.39/89.33	29.52	32.47				
MobileNet-V2								
Pretrained Baseline	32/32	71.88/90.29	N/A	N/A				
Mannual Config. D _A N _{MobileNet}	4/4	65.18/75.77	8.85	9.15				
Auto. Config. DANMobileNetT5ms	Flexible	62.76/73.32	4.93	5.66				
Auto. Config. D _A N _{MobileNet} T _{7ms}	Flexible	66.25/76.09	6.95	7.51				
Auto. Config. D _B N _{MobileNet} T _{5ms}	Flexible	63.41/73.56	4.86	5.33				
Auto. Config. $D_B N_{MobileNet} T_{6ms}$	Flexible	66.04/75.88	5.93	6.62				

Comparison with [3] (Mix and Match, Sung-En et al., 2021):

Outperforms [3] in **latency**, **throughput** and **resource utilization** (GOPS/DSP) with a comparable accuracy and GOPS/kLUT.

Comparison with [35] (Di et al., 2019):

outperforms [35] **2.48** ~ **2.89**× **FPS** when it operates at 100MHz.

Implementation	Mobile [3	Net-V2 5]	V2 ResNet-18 [3]		MobileNet-V2 [3]		ResNet-18 Ours ¹		MobileNet-V2 Ours ²	
Device	ZU2EG	ZU9EG	XC7Z020	XC7Z045	XC7Z020	XC7Z045	XC7Z020	XC7Z045	XC7Z020	XC7Z045
Bit-width (W/A)	8,	/8	4/4		4/4		Flexible	Flexible	Flexible	Flexible
Top-1 Accuracy (%)	68	3.1	70.27		65	.64	70.45	70.39	66.25	66.04
Frequency (MHz)	430	333	100		100		100		100	
LUT	31198	161944	28288	145049	28288	145049	39623	152868	45765	192624
DSP	212	2070	220	900	220	900	220	900	220	900
BRAM	145	771	56	225.5	56	225.5	137	541	137	461
Latency (ms)	-	-	47.10	40.36	8.29	7.28	35.79	32.47	7.51	6.62
Throughput (GOPS)	-	-	77.0	359.2	71.8	326.9	101.3	446.8	80.1	363.5
Frame Rate (FPS)	205.3	809.8	21.3	99.1	120.7	549.3	27.9	123.2	133.2	604.2
GOPS/DSP	-	-	0.350	0.391	0.326	0.363	0.460	0.496	0.364	0.404
GOPS/kLUT	-	-	2.725	2.475	2.538	2.252	2.557	2.923	1.750	1.887

¹ Config. D_AN_{ResNet}T_{35ms} & Config. D_BN_{ResNet}T_{30ms}

² Config. D_AN_{MobileNet}T_{7ms} & Config. D_BN_{MobileNet}T_{6ms}

Thank you.

